

 Navigation

 	
 index

 	
 next |

 	devilry-deploy 1.3.5- documentation

Devilry deployment docs

Deployment docs and scripts for Devilry [http://devilry.org].

Note

You can contribute to these docs.
Use the Edit on GitHub or Show on GitHub link in the sidebar.

You can also submit issues with these docs via
our github project page [https://github.com/devilry/devilry-deploy/issues].

Contents:

	Build Devilry
	Create a system user for Devilry

	Configure buildout

	Install required system packages

	Initialize the buildout

	Configure Devilry

	Create the database

	Install RabbitMQ

	Test the install

	Setup Devilry for production

	Whats next?

	Required system packages
	Python virtualenv

	PostgresSQL (or another database supported by Django)

	Configure supervisord (logging, pidfile, ...)
	Init script

	Harden supervisord

	Debug problems

	Update Devilry

	Configure Nginx as the Devilry webserver for static files

	How to specify a version

	How to deploy a demo on AWS with awsfab and chef-solo
	Get the sources

	Install awsfab

	Configure awsfab to use your AWS credentials

	Deploy with chef-solo and awsfab

	Test Devilry locally with Vagrant
	Install VirtualBox and Vagrant

	Get the sources

	Create a vagrant box

	Tips

	Migration guides
	Migrating from 1.3.4 to 1.3.5

	Migrating from 1.3.1, 1.3.2 or 1.3.3 to 1.3.4

	Migrating from 1.3.1 or 1.3.2 to 1.3.3

	Migrating from 1.3.1 to 1.3.2

	Migrating from 1.3 to 1.3.1

	Migrating from 1.2.1.10 to 1.3

	Migrating from 1.2.1.6 to 1.2.1.8

	1.2.1.7 — Ignore this version

	Migrating from 1.2.1.1 to 1.2.1.2

	Migrating from 1.2.1 to 1.2.1.1

	Migrating from 1.1 to 1.2.1

	1.1 and older

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devilry-deploy 1.3.5- documentation

Build Devilry

Devilry does not come pre-packaged. Instead, we deploy using buildout [http://www.buildout.org/].
There is several reasons for that:

	It is easier to maintain deployment through buildout.

	It is easier to customize Devilry when we do not have to force defaults on
people. With the current method of deployment, admins can easily intergrate
local devilry addons.

	The method we are using seems to work very well for the Plone CMS.

What this means for you is that you have to setup a very minimal
buildout-config instead of downloading an archive and unzipping it.

Create a system user for Devilry

You should run Devilry as a non-privledged user. We suggest you name the user
something like devilryrunner. Run all commands in this documentation as
this user unless stated otherwise.

Configure buildout

Create a directory that will be used to configure your Devilry build:

$ mkdir devilrybuild

Create a configuration file named buildout.cfg in the directory. Add the
following to the configuration file:

[buildout]
extends = https://raw.github.com/devilry/devilry-deploy/REVISION/buildout/buildout-base.cfg

Replace REVISION (in the extends url) with the Devilry version you want to
use (E.g.: v1.2.1). See the tag listing on github [https://github.com/devilry/devilry-deploy/tags] for a list of all releases,
and refer to The releasenotes listing [https://devilry.readthedocs.org/en/1.3.5-/releasenoteslisting.html]
for the information about each release.

Install required system packages

See Required system packages.

Initialize the buildout

CD to the directory and run the following commands to download Devilry and
all dependencies into a Python virtualenv. The end result is a
selfcontained devilry build that only depends on the availability of a
compatible Python interpreter to run. The virtualenv is not affected by
other Python packages installed globally:

$ cd devilrybuild/
$ mkdir -p buildoutcache/dlcache
$ virtualenv --no-site-packages .
$ bin/easy_install zc.buildout
$ bin/buildout "buildout:parts=download-devilryrepo" && bin/buildout

Configure Devilry

To configure Devilry, you need to create a Python module containing a
config-file named devilry_prod_settings.py. First create a directory for
your Devilry configurations:

$ mkdir /etc/devilry

turn the directory into a Python module:

$ touch /etc/devilry/__init__.py

and add your own devilry_prod_settings.py to the directory. This is a good starting point:

Import the default settings from devilry
from devilry_settings.default_settings import *

###
Configure the database
###
DATABASES = {}
DATABASES["default"] = {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'djangodb',
 'USER': 'djangouser',
 'PASSWORD': 'supersecret',
 'HOST': 'localhost',
}

##
Make Devilry speak in typical university terms (semester instead of period, ...)
##
INSTALLED_APPS += ['devilry_university_translations']
DEVILRY_JAVASCRIPT_LOCALE_OVERRIDE_APPS = ('devilry_university_translations',)

###
Email settings
###

#: Default from email - students receive emails from this address when they make deliveries
DEVILRY_EMAIL_DEFAULT_FROM = 'devilry-support@example.com'

#: The URL that is used to link back to devilry from emails
DEVILRY_SCHEME_AND_DOMAIN = 'https://devilry.example.com'

#: Configure an email backend (see the docs for more info)
#EMAIL_BACKEND = 'djcelery_email.backends.CeleryEmailBackend'
#CELERY_EMAIL_HOST_USER = ''
#CELERY_EMAIL_HOST_PASSWORD = ''
#CELERY_EMAIL_PORT = 25
#CELERY_EMAIL_USE_TLS = False

##
Other settings
##

#: Where should Devilry store your files
DEVILRY_FSHIERDELIVERYSTORE_ROOT = '/devilry-filestorage'

#: Randomize this, and keep it secret
SECRET_KEY = '+g$%**q(w78xqa_2)(_+%v8d)he-b_^@d*pqhq!#2p*a7*9e9h'

#: Turn this on if you need to debug Devilry
DEBUG = False
EXTJS4_DEBUG = DEBUG

#: Change this to the name of the system which you fetch data into Devilry from.
DEVILRY_SYNCSYSTEM = 'The Devilry demo syncsystem'

#: Url where users are directed when they do not have the permissions they believe they should have.
DEVILRY_LACKING_PERMISSIONS_URL = None

#: Url where users are directed when they want to know what to do if their personal info in Devilry is wrong.
DEVILRY_WRONG_USERINFO_URL = None

#: Deadline handling method:
#:
#: 0: Soft deadlines
#: 1: Hard deadlines
DEFAULT_DEADLINE_HANDLING_METHOD = 0

The config-file can contain any official Django settings, and Devilry provides
some extra settings that should be useful:

	Django email backends [http://docs.djangoproject.com/en/1.4/topics/email/#topic-email-backends]

	Django settings [https://docs.djangoproject.com/en/1.4/topics/settings/]

	Devilry settings [https://github.com/devilry/devilry-django/blob/1.3.5-/src/devilry_settings/devilry_settings/default_settings.py] (scroll down to the Default for settings defined by Devilry section).

	django-celery-email [https://pypi.python.org/pypi/django-celery-email] is
an addon that sends email in a background queue. The addon is installed by
devilry-deploy by default, and is highly recommended (see
https://github.com/devilry/devilry-django/issues/477).

Note

You can put devilry_prod_settings.py in another directory. You just have to set:

[buildout]
...
configdir = /etc/devilry

in your buildout.cfg and re-run bin/buildout.

Create the database

When you have configured a database in devilry_prod_settings.py, you
can use the following command to create your database:

$ cd /path/to/devilrybuild
$ bin/django.py syncdb

The script will ask you to create a superuser. Choose a strong password - this
user will have complete access to everything in Devilry.

Install RabbitMQ

Follow the guides at their website: http://www.rabbitmq.com/download.html

Refer to the RabbitMQ docs for regular configuration, like logging and
database-file location. The defaults are usable.

Configure RabbitMQ for Devilry

Start the RabbitMQ server.

RabbitMQ creates a default admin user named guest with password guest.
Remove the guest user, and create a new admin user (use another password than
secret):

$ rabbitmqctl delete_user guest
$ rabbitmqctl add_user admin secret
$ rabbitmqctl set_user_tags admin administrator
$ rabbitmqctl set_permissions admin ".*" ".*" ".*"

Setup a vhost for Devilry with a username and password (use another password
than secret):

$ rabbitmqctl add_user devilry secret
$ rabbitmqctl add_vhost devilryhost
$ rabbitmqctl set_permissions -p devilryhost devilry ".*" ".*" ".*"

Add RabbitMQ settings to Devilry

Add the following to /etc/devilry_prod_settings.py (change secret to
match your password):

$ BROKER_URL = 'amqp://devilry:secret@localhost:5672/devilryhost'

Test the install

See Debug problems.

Setup Devilry for production

Collect all static files in the static/-subdirectory:

$ bin/django.py collectstatic

Make sure all services work as excpected

All Devilry services is controlled to Supervisord. This does not include your
database or webserver.

To run supervisord in the foreground for testing/debugging, enable DEBUG-mode
(see Debug problems), and run:

$ bin/supervisord -n

Make sure you disable DEBUG-mode afterwards.

Run Supervisord for production

To run supervisord in the background with a PID, run:

$ bin/supervisord

See Configure supervisord (logging, pidfile, ...) to see and configure where the PID-file is
written, and for an init-script example.

Warning

Do NOT run supervisord as root. Run it as an unpriviledged used, preferably
a user that is only used for Devilry. Use the supervisord-user, as shown
in Configure supervisord (logging, pidfile, ...), to define a user if running supervisord as
root.

Configure your webserver

You need to configure your webserver to act as a reverse proxy for all URLS
except for the /static/-url. The proxy should forward requests to the
Devilry WSGI server (gunicorn). Gunicorn runs on 127.0.0.0:8002.

The webserver should use SSL.

See also

Configure Nginx as the Devilry webserver for static files.

Whats next?

	Update Devilry

	Init script

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devilry-deploy 1.3.5- documentation

Required system packages

Python virtualenv

This is usually named something like python-virtualenv in linux
distributions, and it is often installed by default. You could just
try something like virtualenv --help and see if it is installed.

PostgresSQL (or another database supported by Django)

We recommend PostgreSQL for production. You can use any database supported by Django,
but we do not recommend MySQL because PostgreSQL is far better with an at least as open
license, especially when it comes to transaction management (which is important
when you have to migrate your database between Devilry releases).

The default base buildout config (the one you extend in your buildout.cfg) has the
Python postgresql library, psycopg2 configured as a dependency. See the
psycopg2 install-from-source docs [http://packages.python.org/psycopg2/install.html#install-from-source]
for information about what you need to build it. NOTE: you do not have to build it
(buildout does that in the next section), but you need to install the packages required for
a source install (python development headers, libpg, C compiler, ...).

If you do not want to use PostgreSQL, you can disable it by adding the
following to the [buildout]-section of your buildout.cfg:

eggs -= psycopg2

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devilry-deploy 1.3.5- documentation

Configure supervisord (logging, pidfile, ...)

We handle all logging through Supervisord, so you will probably at least want
to configure where we log to.

You configure supervisord through your buildout.cfg. Add a
supervisor-section, and tune the settings:

[supervisor]
The full path to the supervisord log directory.
Defaults to /path/to/devilrybuild/var/log/
Note: This setting is added by our buildout-base.cfg, and not by the
supervisor buildout recipe.
#logdir =

The pid file of supervisord. Defaults to
/path/to/devilrybuild/var/supervisord.pid
#pidfile =

The maximum number of bytes that may be consumed by the activity log file
before it is rotated. Defaults to 50MB.
#logfile-maxbytes =

The number of backups to keep around resulting from activity log file
rotation. Defaults to 30.
#logfile-backups =

If supervisord is run as the root user, switch users to this UNIX user
account before doing any meaningful processing. This value has no effect if
supervisord is not run as root.
supervisord-user =

Rebuild the Supervisord config (output in parts/supervisor/supervisord.conf):

$ bin/buildout

And restart supervisord.

See the Buildout recipe [http://pypi.python.org/pypi/collective.recipe.supervisor/]
and the Supervisord docs [http://supervisord.org/] for more details.

Init script

The following init script works well. You need to adjust the DAEMON-variable (download):

#! /bin/sh
BEGIN INIT INFO
Provides: supervisord
Required-Start: $remote_fs
Required-Stop: $remote_fs
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Example initscript
Description: This file should be used to construct scripts to be
placed in /etc/init.d.
END INIT INFO

Author: Dan MacKinlay <danielm@phm.gov.au>
Based on instructions by Bertrand Mathieu
http://zebert.blogspot.com/2009/05/installing-django-solr-varnish-and.html
See: https://gist.github.com/176149

Do NOT "set -e"

PATH should only include /usr/* if it runs after the mountnfs.sh script
PATH=/sbin:/usr/sbin:/bin:/usr/bin
DESC="Description of the service"
NAME=supervisord
DAEMON=/usr/local/bin/supervisord
DAEMON_ARGS=""
PIDFILE=/var/run/$NAME.pid
SCRIPTNAME=/etc/init.d/$NAME

Exit if the package is not installed
[-x "$DAEMON"] || exit 0

Read configuration variable file if it is present
[-r /etc/default/$NAME] && . /etc/default/$NAME

Load the VERBOSE setting and other rcS variables
. /lib/init/vars.sh

Define LSB log_* functions.
Depend on lsb-base (>= 3.0-6) to ensure that this file is present.
. /lib/lsb/init-functions

#
Function that starts the daemon/service
#
do_start()
{
	# Return
	# 0 if daemon has been started
	# 1 if daemon was already running
	# 2 if daemon could not be started
	start-stop-daemon --start --quiet --pidfile $PIDFILE --exec $DAEMON --test > /dev/null \
		|| return 1
	start-stop-daemon --start --quiet --pidfile $PIDFILE --exec $DAEMON -- \
		$DAEMON_ARGS \
		|| return 2
	# Add code here, if necessary, that waits for the process to be ready
	# to handle requests from services started subsequently which depend
	# on this one. As a last resort, sleep for some time.
}

#
Function that stops the daemon/service
#
do_stop()
{
	# Return
	# 0 if daemon has been stopped
	# 1 if daemon was already stopped
	# 2 if daemon could not be stopped
	# other if a failure occurred
	start-stop-daemon --stop --quiet --retry=TERM/30/KILL/5 --pidfile $PIDFILE --name $NAME
	RETVAL="$?"
	["$RETVAL" = 2] && return 2
	# Wait for children to finish too if this is a daemon that forks
	# and if the daemon is only ever run from this initscript.
	# If the above conditions are not satisfied then add some other code
	# that waits for the process to drop all resources that could be
	# needed by services started subsequently. A last resort is to
	# sleep for some time.
	start-stop-daemon --stop --quiet --oknodo --retry=0/30/KILL/5 --exec $DAEMON
	["$?" = 2] && return 2
	# Many daemons don't delete their pidfiles when they exit.
	rm -f $PIDFILE
	return "$RETVAL"
}

#
Function that sends a SIGHUP to the daemon/service
#
do_reload() {
	#
	# If the daemon can reload its configuration without
	# restarting (for example, when it is sent a SIGHUP),
	# then implement that here.
	#
	start-stop-daemon --stop --signal 1 --quiet --pidfile $PIDFILE --name $NAME
	return 0
}

case "$1" in
 start)
	["$VERBOSE" != no] && log_daemon_msg "Starting $DESC" "$NAME"
	do_start
	case "$?" in
		0|1) ["$VERBOSE" != no] && log_end_msg 0 ;;
		2) ["$VERBOSE" != no] && log_end_msg 1 ;;
	esac
	;;
 stop)
	["$VERBOSE" != no] && log_daemon_msg "Stopping $DESC" "$NAME"
	do_stop
	case "$?" in
		0|1) ["$VERBOSE" != no] && log_end_msg 0 ;;
		2) ["$VERBOSE" != no] && log_end_msg 1 ;;
	esac
	;;
 #reload|force-reload)
	#
	# If do_reload() is not implemented then leave this commented out
	# and leave 'force-reload' as an alias for 'restart'.
	#
	#log_daemon_msg "Reloading $DESC" "$NAME"
	#do_reload
	#log_end_msg $?
	#;;
 restart|force-reload)
	#
	# If the "reload" option is implemented then remove the
	# 'force-reload' alias
	#
	log_daemon_msg "Restarting $DESC" "$NAME"
	do_stop
	case "$?" in
	 0|1)
		do_start
		case "$?" in
			0) log_end_msg 0 ;;
			1) log_end_msg 1 ;; # Old process is still running
			*) log_end_msg 1 ;; # Failed to start
		esac
		;;
	 *)
	 	# Failed to stop
		log_end_msg 1
		;;
	esac
	;;
 *)
	#echo "Usage: $SCRIPTNAME {start|stop|restart|reload|force-reload}" >&2
	echo "Usage: $SCRIPTNAME {start|stop|restart|force-reload}" >&2
	exit 3
	;;
esac

:

Harden supervisord

The default configuration if for a dedicated server. Supervisorctl uses a
password with the local Supervisord server, which needs to be a better password
in a shared environment. This should not be a problem since it is madness to
host Devilry on a shared host in any case, but if you need to harden Supervisord,
refer to the docs linked above.

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devilry-deploy 1.3.5- documentation

Debug problems

To test that everything works as expected, you can use the Django devserver in
DEBUG-mode. The devserver serves static files, so you do not need a webserver.
It does not use SSL, so be VERY careful when running it on an extrnal NIC (like
the example with 0.0.0.0 below).

First, enable debug-mode in your devilry_production_settings.py:

DEBUG = True

Then run the devserver:

$ bin/django.py runserver

and open http://localhost:8000. You can tell the testserver to allow external
connections, and to listen on another port with:

$ bin/django.py runserver 0.0.0.0:9000 --insecure

Warning

NEVER use the devserver or DEBUG=True in production. It is insecure and
slow.

Note

Some browsers have issues with loading the Devilry javascript sources
from the devserver. We recommend that you use a recent version of
Chrome, Firefox or Safari if you have problems.

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devilry-deploy 1.3.5- documentation

Update Devilry

Warning

These are general instructions that work if we only have code changes.
Refer to the migration guide for each new version for the correct
instructions.

Note

Remember that you should run all these commands as the system user
you created in the Build Devilry guide.
The exception is, of course, stopping/starting Supervisord if you use an
init script.

	Update the REVISION in the extends-attribute in the [buildout] section of your
buildout.cfg as explained in Configure buildout.

	Stop Supervisord. If you did not setup an init-script, you can use the PID-file
in /path/to/devilrybuild/var/supervisord.pid unless you have configured
it to be somewhere else. See: Configure supervisord (logging, pidfile, ...).

	Run buildout:

$ bin/buildout "buildout:parts=download-devilryrepo" && bin/buildout
$ bin/django.py collectstatic --noinput

	Start Supervisord. If you have not created an init-script (see See:
Configure supervisord (logging, pidfile, ...)), start Supervisord manually as explained in
Run Supervisord for production.

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devilry-deploy 1.3.5- documentation

Configure Nginx as the Devilry webserver for static files

For Nginx, you should use something like this (not a complete config file, just
the location sections that you should add to your config):

location /static {
 # Show directory index.
 autoindex on;

 # NOTE from: http://wiki.nginx.org/HttpCoreModule#root
 # Keep in mind that the root will still append the directory
 # to the request so that a request for "/i/top.gif" will not look
 # in "/spool/w3/top.gif" like might happen in an Apache-like alias
 # configuration where the location match itself is dropped. Use the
 # alias directive to achieve the Apache-like functionality.
 root /path/to/devilrybuild;
}

location / {
 proxy_pass http://127.0.0.1:8002;
 proxy_set_header Host $host:$server_port;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-DEVILRY_USE_EXTJS true;

 # SSL options
 proxy_set_header X-FORWARDED-PROTOCOL ssl;
 proxy_set_header X-FORWARDED-SSL on;
 proxy_headers_hash_max_size 1024;
 proxy_headers_hash_bucket_size 256;
 proxy_set_header X-Forwarded-Proto https;
}

We recommend Nginx because it is fast, lightweight, secure and easy to setup.

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devilry-deploy 1.3.5- documentation

How to specify a version

The version of Devilry is defined by the base-template that you extend in your buildout.cfg:

[buildout]
extends = https://raw.github.com/devilry/devilry-deploy/REVISION/buildout/buildout-base.cfg

This base-template is fetched from the devilry-deploy-repository, and the
REVISION is a git tag, branch or CommitID from that repo (NOT from the
devilry repo). We keep tags in sync with stables releases of Devilry, so if you
specify a tag from devilry-deploy (E.g.: 1.2.1), the
buildout-base.cfg will be configured to use that version of Devilry.

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devilry-deploy 1.3.5- documentation

How to deploy a demo on AWS with awsfab and chef-solo

Get the sources

Clone the sources for devilry-deploy. You find them at our GitHub project
page [https://github.com/devilry/devilry-deploy]

Install awsfab

Install awsfab in a virtualenv in the awsfab-folder:

$ cd awsfab/
$ virtualenv --no-site-packages .
$ bin/easy_install zc.buildout
$ bin/buildout

Configure awsfab to use your AWS credentials

Create a keypair for the devilry demo

Go to http://console.aws.amazon.com, and select EC2 -> Key Pairs. Create a
key named devilrydemo. Put the .pem file in ~/.ssh/. Make sure you
set the permissions of your .pem-file so only you can access it:

$ chmod 600 ~/.ssh/devilrydemo.pem

Configure your access key

Go to http://console.aws.amazon.com, and select Your name (in the header) -> Security credentials.
Under the Security credentials-heading you will find your Access Key ID
and Secret Access Key. Create a file named awsfab_settings_local.py (in
the directory containing awsfab_settings.py, and add the keys:

AUTH = {'aws_access_key_id': 'Access Key ID',
 'aws_secret_access_key': 'Secret Access Key'}

If you want to put ``devilrydemo.pem`` another place than ~/.ssh/, set KEYPAIR_PATH
#KEYPAIR_PATH = ['/path/to/dir/containing/key']

See http://awsfabrictasks.readthedocs.org/ for
more details.

Deploy with chef-solo and awsfab

Launch/create a new EC2 instance for the webserver

Launch an EC2 m1.small instance with ubuntu-server:

$ bin/awsfab ec2_launch_instance:devilrydemo0,ubuntu-SMALL

In this example, we name our instance devilrydemo0, this means that the
Name-tag will be devilrydemo0. You can choose whatever name you like.

Install chef-solo on the instance

Install chef-solo on the instance. You only need to do this once for each
instance. Make sure the name (after -E), matches the one you picked for
ec2_launch_instance above:

$ bin/awsfab -E devilrydemo0 install_chefclient

Deploy the demo with chef-solo

With Chef, you always deploy a node. Each node is configured in a
*.json-file in REPOROOT/chef/nodes/.

Deploy devilrydemo.json to devilrydemo0:

$ bin/awsfab -E devilrydemo0 chef_deploy:devilrydemo.json

Update

To update the demo, simply repeat the chef_deploy-command.

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devilry-deploy 1.3.5- documentation

Test Devilry locally with Vagrant

You can deploy a complete Devilry demo in a local VirtualBox machine
with just a couple of commands.

Install VirtualBox and Vagrant

See the Vagrant website [http://www.vagrantup.com/]. The getting started
guide explains about VirtualBox and where to download it.

Get the sources

Clone the sources for devilry-deploy. You find them at our GitHub project
page [https://github.com/devilry/devilry-deploy]

Create a vagrant box

$ cd vagrant/
$ vagrant up

When the box is up, you can visit Devilry at http://localhost:9090. Login
with one of:

- ``thor`` (student, examiner and courseadmin) - Since the current release is focused on the subject admin UI, this is probably the user you want to be using.
- ``dewey`` (student) - Use this instead of thor if you really want to test the student UI.
- ``donald`` (examiner)
- ``grandma`` (superuser)

or go to http://localhost:9090/devilry_sandbox/createsubject-intro.

Tips

Re-provisioning a lot, and tired of waiting for dev_autodb? Edit
chef/our_cookbooks/devilrydemo/recipes/default.rb, and change the
dev_autodb-line to:

bin/django.py dev_autodb --no-groups > /tmp/devilrydemo-dev_autodb.log

Just make sure you do not commit this change.

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devilry-deploy 1.3.5- documentation

Migration guides

If a minor version is not listed here, it is a code-only update, which means that
the update guide guide is all you need.

	Migrating from 1.3.4 to 1.3.5

	Migrating from 1.3.1, 1.3.2 or 1.3.3 to 1.3.4

	Migrating from 1.3.1 or 1.3.2 to 1.3.3

	Migrating from 1.3.1 to 1.3.2

	Migrating from 1.3 to 1.3.1

	Migrating from 1.2.1.10 to 1.3

	Migrating from 1.2.1.6 to 1.2.1.8

	1.2.1.7 — Ignore this version

	Migrating from 1.2.1.1 to 1.2.1.2

	Migrating from 1.2.1 to 1.2.1.1

	Migrating from 1.1 to 1.2.1

	1.1 and older

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devilry-deploy 1.3.5- documentation

 	Migration guides

Migrating from 1.3.4 to 1.3.5

Changes

Bugfixes:
- https://github.com/devilry/devilry-django/issues/477
- https://github.com/devilry/devilry-django/issues/478
-

The most significant change is django-celery-email [https://github.com/devilry/devilry-django/issues/477] as email backend.

django-celery-email sends all email into the Celery task queue, which then
sends email in the background one at a time. This fixes scalibility problems
when adding feedback in bulk. The issue that triggered this change was
https://github.com/devilry/devilry-django/issues/477.

Backup database and files

BACKUP. YOUR. DATABASE. AND. FILES.

Update devilry

Move your logdir buildout config

Previous versions of devilry-deploy defined the logdir in the
[supervisor]-section of buildout.cfg. This has been moved to
[variables]. You should end up with something like this:

[variables]
logdir = /var/log/devilry

Update to v1.3.5 - but do not restart supervisord

Update REVISION to v1.3.5 using the instructions in the update guide, but stop after step 3.

Update your email settings to use django-celery-email

Note

Settings are configured in devilry_prod_settings.py (see Build Devilry).

The default location is /etc/devilry, but it may have been placed in a
custom location (also explained in Build Devilry).

To configure Devilry to use django-celery-email, do the following:

	Make a backup of your current devilry_prod_settings.py, and put it
somewhere safe in case the new email backend does not work correctly.

	Replace the value of your EMAIL_BACKEND-setting with
djcelery_email.backends.CeleryEmailBackend.

	Prefix all other EMAIL_*-settings with CELERY_. You should end up
with something like this:

EMAIL_BACKEND = 'djcelery_email.backends.CeleryEmailBackend'
CELERY_EMAIL_HOST = 'smtp.example.com'
CELERY_EMAIL_PORT = 25

Restart supervisord

Run the last step of the update guide.

Test that email sending is working

The that sending email works. You can do this as follows:

	Logging into the Devilry webUI.

	Select Superuser->Users.

	Click yourself (you can search).

	Click the Send a test email to <your username> button.

If you have the correct email address configured in Devilry, you should receive an email if sending is workin.

If it does not work, you should restore the old devilry_prod_settings.py and restart Devilry.

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devilry-deploy 1.3.5- documentation

 	Migration guides

Migrating from 1.3.1, 1.3.2 or 1.3.3 to 1.3.4

Changes

http://devilry.readthedocs.org/en/latest/releasenotes-1.3.4.html

Backup database and files

BACKUP. YOUR. DATABASE. AND. FILES.

Update devilry

Update to v1.3.4

Update REVISION to v1.3.4 using the instructions in the update guide

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devilry-deploy 1.3.5- documentation

 	Migration guides

Migrating from 1.3.1 or 1.3.2 to 1.3.3

Changes

Backup database and files

BACKUP. YOUR. DATABASE. AND. FILES.

Update devilry

Update to v1.3.3

Update REVISION to v1.3.3 using the instructions in the update guide

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devilry-deploy 1.3.5- documentation

 	Migration guides

Migrating from 1.3.1 to 1.3.2

Warning

Do not use this version, use 1.3.3 instead. See
https://github.com/devilry/devilry-django/issues/463 for more details.

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devilry-deploy 1.3.5- documentation

 	Migration guides

Migrating from 1.3 to 1.3.1

Changes

	Initial South database migration setup. Makes no changes to our database
tables, but it adds tables for South migration history.

	Increased the timeout of gunicorn from 30 to 180 sec. This should avoid
timeouts on huge courses for really heavy operations like manually adding all
students.

	
	Fixed:

	
	https://github.com/devilry/devilry-django/issues/437

	https://github.com/devilry/devilry-django/issues/444

	https://github.com/devilry/devilry-django/issues/447

See also

http://devilry.readthedocs.org/en/latest/releasenotes-1.3.1.html

Backup database and files

BACKUP. YOUR. DATABASE. AND. FILES.

Update devilry

1 — Remove the Python Egg cache

For the fix to #444 [https://github.com/devilry/devilry-django/issues/444]
to work, you have to clear the Python Egg cache. This should not cause any
problems, but we will take a backup to be on the safe side.

	Locate your buildout cache. If you followed the install guide, it should be
in /path/to/devilrybuild/buildoutcache/eggs/.

	Move the cache to a safe location:

$ mv /path/to/devilrybuild/buildoutcache/eggs /my/safe/stash/
$ mkdir /path/to/devilrybuild/buildoutcache/eggs

Make sure to check that buildoutcache/eggs/ is not empty after step 2
(below). If eggs/ is empty, you found the wrong buildoutcache directory,
and you have to repeat steps 1 and 2.

Note

You will probably get a lot of Fortran warnings/errormessages when you run
buildout in the next step. This is because the numpy library tries to build
stuff with fortran support. This is not a problem for Devilry - we do not use
any of the sub-modules that need Fortran.

2 — Update to v1.3 step 1-3

Update REVISION to v1.3.1 using the instructions in the update guide,
but stop after step 3 (do not restart supervisord).

3 — Apply the initial South migrations

Run the following commands to add the new South database tables, and fake the
migrations to the current database state:

$ cd /path/to/devilrybuild
$ bin/django.py syncdb
$ bin/django.py migrate core 0001 --fake
$ bin/django.py migrate devilry_qualifiesforexam 0001 --fake
$ bin/django.py migrate devilry_qualifiesforexam_points 0001 --fake
$ bin/django.py migrate devilry_qualifiesforexam_approved 0001 --fake

Note

We need to fake the migrations because we did not use South when the
database was intially created. You can read more about South initial
in their docs [http://south.readthedocs.org/en/latest/convertinganapp.html].

4 — Restart the servers

Restart the appservers as explained in step 4 in the update guide.

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devilry-deploy 1.3.5- documentation

 	Migration guides

Migrating from 1.2.1.10 to 1.3

Major changes

See: http://devilry.readthedocs.org/en/latest/releasenotes-1.3.html

Backup database and files

BACKUP. YOUR. DATABASE. AND. FILES.

Update devilry

Set the new setting

Add the DEVILRY_NOT_RELATEDSTUDENT_ON_PERIOD_URL to your
/etc/devilry/devilry_prod_settings.py:

DEVILRY_NOT_RELATEDSTUDENT_ON_PERIOD_URL = "http://example.com/guides/notrelatedstudent.html"

The setting must point to a page where users can read about what do do when
they are registered on an assignment, but not on the course. See
https://github.com/devilry/devilry-django/issues/433 for more information
about the problem, and screenshots that illustrate how users interract with
this setting.

Update to v1.3

Update REVISION to v1.3 using the instructions in the update guide.

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devilry-deploy 1.3.5- documentation

 	Migration guides

Migrating from 1.2.1.6 to 1.2.1.8

Major changes

1.2.1.8 introduces devilry_qualifiesforexam, which handles selecting
the students that qualifies for final exams. This includes new database tables,
but no changes to existing tables.

Backup database and files

BACKUP. YOUR. DATABASE. AND. FILES.

Update devilry

Update to v1.2.1.8 using the instructions in the update guide, BUT run the following command between step 3 and step 4:

$ bin/django.py syncdb

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devilry-deploy 1.3.5- documentation

 	Migration guides

1.2.1.7 — Ignore this version

Warning

This version had an error, so you should use version 1.2.1.8 instead.

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devilry-deploy 1.3.5- documentation

 	Migration guides

Migrating from 1.2.1.1 to 1.2.1.2

This is a code-only update, use the update guide (REVISION v1.2.1.2).

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devilry-deploy 1.3.5- documentation

 	Migration guides

Migrating from 1.2.1 to 1.2.1.1

Major changes

1.2.1.1 introduces Solr search and the Celery Task queue and periodic task
scheduler to Devilry. Most of the setup is handled by our buildout recipes.

Solr requires java 1.5 or later, GCJ does not work.

Install RabbitMQ

Follow the guides at their website: http://www.rabbitmq.com/download.html

Refer to the RabbitMQ docs for regular configuration, like logging and
database-file location. The defaults are usable.

Configure RabbitMQ for Devilry

Start the RabbitMQ server.

RabbitMQ creates a default admin user named guest with password guest.
Remove the guest user, and create a new admin user (use another password than
secret):

$ rabbitmqctl delete_user guest
$ rabbitmqctl add_user admin secret
$ rabbitmqctl set_user_tags admin administrator
$ rabbitmqctl set_permissions admin ".*" ".*" ".*"

Setup a vhost for Devilry with a username and password (use another password
than secret):

$ rabbitmqctl add_user devilry secret
$ rabbitmqctl add_vhost devilryhost
$ rabbitmqctl set_permissions -p devilryhost devilry ".*" ".*" ".*"

Add RabbitMQ settings to Devilry

Add the following to /etc/devilry_prod_settings.py (change secret to
match your password):

$ BROKER_URL = 'amqp://devilry:secret@localhost:5672/devilryhost'

Stop Devilry

Stop all supervisord processes using:

$ bin/supervisorctl stop all

Then stop supervisord using your init-script, or by killing it with pid.

Backup database and files

BACKUP. YOUR. DATABASE. AND. FILES.

Update devilry

Update to v1.2.1.1 using the instructions in the update guide, but skip step 4 (start Devilry).

Autocreate the new database tables for Celery

This command should be very safe, becuase it only creates new tables, and
refuses to touch existing tables:

$ bin/django.py syncdb

Start Devilry

Use your init script to start Supervisord, or restart supervisord with
bin/supervisord as explained in the getting started guide.

Build the Solr search index

We automatically update the search index whenever new content is added, but we
have to index all the existing content:

$ bin/django.py rebuild_index --noinput

Search will not work while this is running, but everything else will.

Warning

The current supervisor setup does not stop the Solr search server completely. You
have to manually kill solr until we develop a fix. The solr command will look something
like this in the ps -ef listing:

/usr/bin/java -Djava.util.logging.config.file=/path/to/devilry-deploy/buildout/parts/solr/logging.properties
-Dsolr.solr.home=/path/to/devilry-deploy/buildout/var/solr/home
-Dsolr.data.dir=/path/to/devilry-deploy/buildout/var/solr/data -jar start.jar

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devilry-deploy 1.3.5- documentation

 	Migration guides

Migrating from 1.1 to 1.2.1

See also

Releasenotes [https://devilry.readthedocs.org/en/1.3.5-/releasenotes-1.2.1.html]

Stop Devilry

Stop any running Devilry-server.

Backup database and files

I repeat. BACKUP. YOUR. DATABASE. AND. FILES.

Dump your current database schema

We will use this for database migration later, so take good care of it:

$ bin/django_production.py sqlall core > ~/devilry-database-1.1.sql

Setup Devilry using the new deployment pattern

We are in the process of making Devilry far more sysadmin-friendly. A separate
documentation project is part of that. Another part is a deployment pattern
inspired heavily by Plone.

The only thing you should take with you from 1.1 to 1.2.1 is:

	The database.

	The deliverystore (files uploaded by students).

	Some of the settings (database, email, ...)

To achieve this, you should follow the Build Devilry guide,
but ignore the the following sections in favor of alternatives from this guide:

	Configure Devilry - See Migrate the settings below.

	Create the database - See Migrate the database below.

Migrate the settings

Use the suggested starting point for devilry_prod_settings.py, and copy in
the values you used previously for each setting.

Migrate the database

Dump the new database schema:

$ cd devilrybuild/
$ bin/django.py sqlall core > ~/devilry-database-1.2.1.sql

Let Devilry create any new database tables (this creates any new tables, but
does not change existing tables):

$ bin/django.py syncdb

Migrate the new and changed database fields manually by diffing
~/devilry-database-1.1.sql and ~/devilry-database-1.2.1.sql.

Post update actions

Provide help for your users

The new Devilry subjectadmin UI expects you to use the Help-links app
introduced in 1.1 to provide guides for them to get started. It has two
sections on the dashboard:

	Interractive guides — Built-in guides that you can not configure.

	More guides and help — Click your username in the header, and see under
the Help-heading.

This means that you will get frustrated users unless you add Help-links.
Login as a superuser and choose the superuser role on the frontpage to go to
the admin-panel where you can edit help-links. We suggest that you add the
following Help-links for all roles:

https://devilry-userdoc.readthedocs.org/ — Official Devilry user documentation

You should also add any other guides that can make Devilry more user-friendly for
your users. The most important such local guide is most likely an overview of
how Devilry intergrates itself with your environment (where do users come
from, and how are the assigned roles).

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 previous |

 	devilry-deploy 1.3.5- documentation

 	Migration guides

1.1 and older

Refer to the releasenotes/-directory of the Devilry repository.

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	devilry-deploy 1.3.5- documentation

Index

 Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		devilry-deploy 1.3.5- documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Devilry developers.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

